Application Note

Condition Monitoring of Centrifugal Pumps – Horizontal, Large
Application Note

Condition Monitoring of Centrifugal Pumps – Horizontal, Large

Scope

The machine monitoring strategy is applicable to all types of large, horizontal centrifugal pumps with journal bearings. It is a generic solution, so it can be used for machines in a wide range of industrial processes for all types of fluid applications, including cryogenic (LNG). Smaller horizontal pumps with rolling element bearings are covered by a separate application note.

Machine Operation and Maintenance Requirements

Pumps are used in many applications, including the petrochemical and power industry. The amount and type of maintenance required for pumps is highly dependent on the type of process they are used in and their operation duty. There is consequently a wide range of different failure modes that can occur. Typical faults include unbalance, misalignment, bent shaft, sub-synchronous instability and damaged bearings. The wet portion of the pump can also be affected by flow disturbances and cavitation.

If unchecked, these potential failure modes can consequently result in excessive loading, high axial thrust, premature bearing failure, seal leaks, component damage or even a catastrophic failure.

Monitoring Strategy

A condition monitoring strategy is intended to detect most developing faults at an early enough stage such that maintenance can be cost-effectively planned ahead of time without stopping the machine.

The sensors used for protective monitoring are also used for condition monitoring, but some process signals, either imported or directly measured, are used in addition. Protective monitoring is vital for many large pumps for monitoring failure modes of critical components which have little or no advance warning, such as debris in the liquid, rubbing, thrust bearing contact or loss of lubrication.

The condition monitoring strategy can be extended with Performance monitoring techniques for detecting a greater number of potential failure modes and for optimising the overall performance of the pump.
Monitoring Configuration and Techniques

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Vib}_{\text{Casing}})</td>
<td>Casing radial vibration (accelerometer)</td>
</tr>
<tr>
<td>(\text{Vib}_{\text{Main Brg}})</td>
<td>X-Y Bearing radial vibration (displacement sensor)</td>
</tr>
<tr>
<td>(\text{Vib}_{\text{Thrust Brg}})</td>
<td>Axial displacement (displacement sensor)</td>
</tr>
<tr>
<td>(\text{N})</td>
<td>Shaft speed, phase reference</td>
</tr>
<tr>
<td>(\text{T}_{\text{Main Brg}})</td>
<td>Axial and radial bearing temperature</td>
</tr>
<tr>
<td>(\text{T}_{\text{Thrust Brg}})</td>
<td>Bearing lube temp., pressure, differential pressure across filter, level, flow</td>
</tr>
</tbody>
</table>

Figure 1. Monitoring inputs.

Table 1. Input signal symbols.
Monitoring Configuration and Techniques (cont.)

<table>
<thead>
<tr>
<th>Sensor Location (type)</th>
<th>Measurements</th>
<th>Plots</th>
<th>Faults that can be detected and diagnosed</th>
</tr>
</thead>
</table>
| **Shaft** (Relative radial vibr.) | • Overall (ISO:1Hz/10Hz - 1kHz)
• S_{max}
• DC (shaft position)
• Autospectrum (FFT)
• DC vs. RPM
• 1x, 2x, 3x | • Trend vs. time/speed
• Spectrum
• waterfall
• Orbit
• Shaft position polar
• Transient (Bodé) | Bearing damage, lack of lubrication, overload, wear, misalignment, unbalance, sub-synchronous instability |
| **Shaft** (Tacho) | • Speed, phase | • Trend vs. time | Phase and triggering used in other measurements |
| **Thrust bearing** (Relative axial displ.) | • DC (displ.) | • Scalar vs. time/speed | Bearing damage, lack of lubrication, overload, wear |
| **Casing** (Absolute radial vibr.) | • Overall (ISO:1Hz/10Hz - 1kHz)
• CPB6%
• Autospectrum (FFT) | • Trend vs. time/speed
• Spectrum
• waterfall | General faults, flow problems, cavitation, blade clearance, rubbing |
| **Bearing** (Process) | • DC (bearing temp, oil level, oil pressure, power) | • Trend vs. time/speed | Bearing damage, lack of lubrication, overload, wear. |

Table 2. Monitoring techniques.